7.1 Integration By Parts/32: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<math> f'(x)= \int_{0}^{t} e^s sin(t-s) \cdot ds </math> <br><br>
<math> f'(x)= \int_{0}^{t} e^s sin(t-s) \cdot ds </math> <br><br>


<math>\int_{0}^{t} e^s sin(t-s) \cdot ds ~ ~ ~ = ~ ~ ~ e^s \cdot cos(t-s) - \int_{0}^{t} e^s cos(t-s) \cdot ds ~ ~ ~ = ~ ~ ~ e^s \cdot cos(t-s) - e^s \cdot sin(t-s) -\int_{0}^{t} e^s \sin(t-s) \cdot ds</math><br>
<math>\int_{0}^{t} e^s \sin(t-s) \cdot ds ~ ~ ~ = ~ ~ ~ e^s \cdot \cos(t-s) - \int_{0}^{t} e^s \cos(t-s) \cdot ds ~ ~ ~ = ~ ~ ~ e^s \cdot \cos(t-s) - e^s \cdot \sin(t-s) -\int_{0}^{t} e^s \sin(t-s) \cdot ds</math><br>


<math> u= e^s ~ ~ ~ ~ ~ dv=sin(t-s)dx ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ u=e^s ~ ~ ~ ~ ~ dv=cos(t-s)</math><br>  
<math> u= e^s ~ ~ ~ ~ ~ dv=\sin(t-s)dx ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ u=e^s ~ ~ ~ ~ ~ dv=\cos(t-s)</math><br>  


<math>du= e^s ds~ ~ v=cos(t-s) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ du=e^s ~ ~ ~ ~ ~ v=-sin(t-s)</math> <br><br>
<math>du= e^s ds~ ~ v=\cos(t-s) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ du=e^s ~ ~ ~ ~ ~ v=-\sin(t-s)</math> <br><br>


<math>\int_{0}^{t} e^s sin(t-s) \cdot ds ~ ~ ~ = ~ ~ ~ e^s \cdot cos(t-s) - e^s \cdot sin(t-s) -\int_{0}^{t} e^s \sin(t-s) \cdot ds</math><br>
<math>\int_{0}^{t} e^s \sin(t-s) \cdot ds ~ ~ ~ = ~ ~ ~ e^s \cdot \cos(t-s) - e^s \cdot \sin(t-s) -\int_{0}^{t} e^s \sin(t-s) \cdot ds</math><br>


<math>2\int_{0}^{t} e^s sin(t-s) \cdot ds ~ ~ ~ = ~ ~ ~ e^s \cdot cos(t-s) - e^s \cdot sin(t-s)</math><br>
<math>2\int_{0}^{t} e^s \sin(t-s) \cdot ds ~ ~ ~ = ~ ~ ~ e^s \cdot \cos(t-s) - e^s \cdot \sin(t-s)</math><br>


<math>\int_{0}^{t} e^s sin(t-s) \cdot ds ~ ~ ~ = ~ ~ ~ \frac{e^s}{2}(cos(t-s) - sin(t-s)) \Bigg|_0^t</math><br>
<math>\int_{0}^{t} e^s \sin(t-s) \cdot ds ~ ~ ~ = ~ ~ ~ \frac{e^s}{2}(\cos(t-s) - \sin(t-s)) \Bigg|_0^t</math><br>


<math>=\frac{e^s}{2}(cos(0) - sin(0)) -\frac{e^s}{2}(cos(t) - sin(t))</math><br>
<math>=\frac{e^t}{2}(\cos(0) - \sin(0)) -\frac{e^0}{2}(\cos(t) - \sin(t))</math><br>
 
<math>=\frac{e^t}{2}-\frac{1}{2}(\cos(t) - \sin(t))</math><br>


[[7.1 Integration By Parts/1|1]]
[[7.1 Integration By Parts/1|1]]

Latest revision as of 17:06, 29 November 2022












1 2 3 4 5 7 8 9 10 11 12 13 14 15 17 18 19 20 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 43 45 47 48 49 50 51 52 53 54 61 65