7.1 Integration By Parts/32: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<math> f'(x)= \int_{0}^{t} e^s sin(t-s) \cdot ds </math> <br><br> | <math> f'(x)= \int_{0}^{t} e^s sin(t-s) \cdot ds </math> <br><br> | ||
<math>\int_{0}^{t} e^s sin(t-s) \cdot ds ~ ~ ~ = ~ ~ ~ e^s \cdot cos(t-s) - \int_{0}^{t} e^s cos(t-s) \cdot ds ~ ~ ~ = ~ ~ ~ e^s \cdot cos(t-s) - e^s \cdot sin(t-s) -\int_{0}^{t} e^s \sin(t-s) \cdot ds</math><br> | <math>\int_{0}^{t} e^s \sin(t-s) \cdot ds ~ ~ ~ = ~ ~ ~ e^s \cdot \cos(t-s) - \int_{0}^{t} e^s \cos(t-s) \cdot ds ~ ~ ~ = ~ ~ ~ e^s \cdot \cos(t-s) - e^s \cdot \sin(t-s) -\int_{0}^{t} e^s \sin(t-s) \cdot ds</math><br> | ||
<math> u= e^s ~ ~ ~ ~ ~ dv=sin(t-s)dx ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ u=e^s ~ ~ ~ ~ ~ | <math> u= e^s ~ ~ ~ ~ ~ dv=\sin(t-s)dx ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ u=e^s ~ ~ ~ ~ ~ dv=\cos(t-s)</math><br> | ||
<math>du= e^s ds~ ~ v=cos(t-s) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ du=e^s ~ ~ ~ ~ ~ v=-sin(t-s)</math> <br><br> | <math>du= e^s ds~ ~ v=\cos(t-s) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ du=e^s ~ ~ ~ ~ ~ v=-\sin(t-s)</math> <br><br> | ||
<math>\int_{0}^{t} e^s sin(t-s) \cdot ds ~ ~ ~ = ~ ~ ~ e^s \cdot cos(t-s) - e^s \cdot sin(t-s) -\int_{0}^{t} e^s \sin(t-s) \cdot ds</math><br> | <math>\int_{0}^{t} e^s \sin(t-s) \cdot ds ~ ~ ~ = ~ ~ ~ e^s \cdot \cos(t-s) - e^s \cdot \sin(t-s) -\int_{0}^{t} e^s \sin(t-s) \cdot ds</math><br> | ||
<math>2\int_{0}^{t} e^s sin(t-s) \cdot ds ~ ~ ~ = ~ ~ ~ e^s \cdot cos(t-s) - e^s \cdot sin(t-s)</math><br> | <math>2\int_{0}^{t} e^s \sin(t-s) \cdot ds ~ ~ ~ = ~ ~ ~ e^s \cdot \cos(t-s) - e^s \cdot \sin(t-s)</math><br> | ||
<math>\int_{0}^{t} e^s sin(t-s) \cdot ds ~ ~ ~ = ~ ~ ~ \frac{e^s}{2}(cos(t-s) - sin(t-s)) \Bigg|_0^t</math><br> | <math>\int_{0}^{t} e^s \sin(t-s) \cdot ds ~ ~ ~ = ~ ~ ~ \frac{e^s}{2}(\cos(t-s) - \sin(t-s)) \Bigg|_0^t</math><br> | ||
<math>=\frac{e^ | <math>=\frac{e^t}{2}(\cos(0) - \sin(0)) -\frac{e^0}{2}(\cos(t) - \sin(t))</math><br> | ||
<math>=\frac{e^t}{2}-\frac{1}{2}(\cos(t) - \sin(t))</math><br> | |||
[[7.1 Integration By Parts/1|1]] | [[7.1 Integration By Parts/1|1]] |