∫ s 2 s d s = s ∗ 2 s l n ( 2 ) − ∫ 2 s l n ( 2 ) d s = s ∗ 2 s l n ( 2 ) − 1 l n ( 2 ) ∗ ∫ 2 s d s = s ∗ 2 s l n ( 2 ) − 1 l n ( 2 ) = s ∗ 2 s l n ( 2 ) − 2 s l n ( 2 ) 2 + c {\displaystyle \int s2^{s}ds=s*{\frac {2^{s}}{ln(2)}}-\int {\frac {2^{s}}{ln(2)}}ds=s*{\frac {2^{s}}{ln(2)}}-{\frac {1}{ln(2)}}*\int 2^{s}ds=s*{\frac {2^{s}}{ln(2)}}-{\frac {1}{ln(2)}}={\frac {s*2^{s}}{ln(2)}}-{\frac {2^{s}}{ln(2)^{2}}}+c}