7.1 Integration By Parts/29: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math> f'(x)= \int_{}^{}\cos(x)\ln(sin(x))\cdot dx </math> <br><br> | <math> f'(x)= \int_{}^{}\cos(x)\ln(sin(x))\cdot dx </math> <br><br> | ||
<math>\int_{}^{}\cos(x)\ln(\sin(x))\cdot dx = \int_{}^{}\ln(u)\cdot du ~ ~ ~ = | <math>\int_{}^{}\cos(x)\ln(\sin(x))\cdot dx ~~~ = ~~~ \int_{}^{}\ln(u)\cdot du ~~~ = ~~~ u\ln(u)-\int_{}^{} du ~~~=~~~ u\ln(u)-u+c</math><br> | ||
<math>u=\sin(x) | <math>u=\sin(x) \qquad \qquad z=\ln(u) \qquad dw=du</math> <br> | ||
<math> du=\cos(x)\cdot dx | <math> du=\cos(x)\cdot dx \qquad dz=\frac{1}{x}\cdot du \qquad w=u</math> <br><br> | ||
<math>\text{Therefore, } f(x)=\sin(x)\ln(\sin(x))-\sin(x)+c</math> | <math>\text{Therefore, } f(x)=\sin(x)\ln(\sin(x))-\sin(x)+c</math> | ||