7.1 Integration By Parts/14: Difference between revisions
Jump to navigation
Jump to search
(Created page with "<math>\int s2^s ds= s*\frac{2^s}{ln(2)}-\int\frac{2^s}{ln(2)}ds= s*\frac{2^s}{ln(2)}-\frac{1}{ln(2)}*\int 2^s ds=s*\frac{2^s}{ln(2)}-\frac{1}{ln(2)}=\frac{s*2^s}{ln(2)}-\frac{2^s}{ln(2)^2}</math>") |
No edit summary |
||
| Line 1: | Line 1: | ||
<math>\int s2^s ds= s*\frac{2^s}{ln(2)}-\int\frac{2^s}{ln(2)}ds= s*\frac{2^s}{ln(2)}-\frac{1}{ln(2)}*\int 2^s ds=s*\frac{2^s}{ln(2)}-\frac{1}{ln(2)}=\frac{s*2^s}{ln(2)}-\frac{2^s}{ln(2)^2}</math> | <math>\int s2^s ds= s*\frac{2^s}{ln(2)}-\int\frac{2^s}{ln(2)}ds= s*\frac{2^s}{ln(2)}-\frac{1}{ln(2)}*\int 2^s ds=s*\frac{2^s}{ln(2)}-\frac{1}{ln(2)}=\frac{s*2^s}{ln(2)}-\frac{2^s}{ln(2)^2}+c </math> | ||
Latest revision as of 00:18, 2 December 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int s2^s ds= s*\frac{2^s}{ln(2)}-\int\frac{2^s}{ln(2)}ds= s*\frac{2^s}{ln(2)}-\frac{1}{ln(2)}*\int 2^s ds=s*\frac{2^s}{ln(2)}-\frac{1}{ln(2)}=\frac{s*2^s}{ln(2)}-\frac{2^s}{ln(2)^2}+c }