6.5 Average Value of a Function/15: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
The table gives values of a continuous function. Use the Midpoint Rule to estimate the average value of <math> f </math> on <math> [20, 50] </math>.\\
The table gives values of a continuous function. Use the Midpoint Rule to estimate the average value of <math> f </math> on <math> [20, 50] </math>.\\


\usepackage{tabularx}
% ...


\begin{tabularx}{\textwidth}{ |X|X|X|X| }
  \hline
  label 1 & label 2 & label 3 & label 4 \\
  \hline
  item 1  & item 2  & item 3  & item 4  \\
  \hline
\end{tabularx}


\end{align}
\end{align}

Revision as of 01:51, 25 November 2022

\begin{align}

The table gives values of a continuous function. Use the Midpoint Rule to estimate the average value of on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle [20, 50] } .\\

\usepackage{tabularx} % ...

\begin{tabularx}{\textwidth}{ |X|X|X|X| }

 \hline
 label 1 & label 2 & label 3 & label 4 \\
 \hline 
 item 1  & item 2  & item 3  & item 4  \\
 \hline

\end{tabularx}

\end{align}


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} f_{avg} &= \frac{1}{30} \int_{20}^{50} f(x)dx \\[2ex] &=\frac{1}{30} \left[10\bigg( f(25)+f(35)+f(45) \bigg) \right] = \frac{1}{3} \bigg(38+29+48 \bigg) \\[2ex] &= \frac{115}{3} \\[2ex] &= 38 \frac{1}{3} \end{align} }