The table gives values of a continuous function. Use the Midpoint Rule to estimate the average value of f {\displaystyle f} on [ 20 , 50 ] {\displaystyle [20,50]} .
f a v g = 1 30 ∫ 20 50 f ( x ) d x = 1 30 [ 10 ( f ( 25 ) + f ( 35 ) + f ( 45 ) ) ] = 1 3 ( 38 + 29 + 48 ) = 115 3 = 38 1 3 {\displaystyle {\begin{aligned}f_{avg}&={\frac {1}{30}}\int _{20}^{50}f(x)dx\\[2ex]&={\frac {1}{30}}\left[10{\bigg (}f(25)+f(35)+f(45){\bigg )}\right]={\frac {1}{3}}{\bigg (}38+29+48{\bigg )}\\[2ex]&={\frac {115}{3}}\\[2ex]&=38{\frac {1}{3}}\end{aligned}}}