5.3 The Fundamental Theorem of Calculus/28
< 5.3 The Fundamental Theorem of Calculus
Jump to navigation
Jump to search
Revision as of 21:56, 23 August 2022 by Dvaezazizi@laalliance.org (talk | contribs)
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int _{0}^{1}\left(3+x{\sqrt {x}}\right)dx&=\int _{0}^{1}\left(3+x^{1}{x}^{\frac {1}{2}}\right)dx=\int _{0}^{1}\left(3+x^{1+{\frac {1}{2}}}\right)dx=\int _{0}^{1}\left(3+x^{\frac {3}{2}}\right)dx\\[1ex]&=3x+{\frac {x^{{\frac {3}{2}}+1}}{{\frac {3}{2}}+1}}{\bigg |}_{0}^{1}=3x+{\frac {x^{\tfrac {5}{2}}}{\frac {5}{2}}}{\bigg |}_{0}^{1}=3x+{\frac {2x^{\frac {5}{2}}}{5}}{\bigg |}_{0}^{1}\\&=\left[3(1)+{\frac {2(1)^{5/2}}{5}}\right]-\left[3(0)+{\frac {2(0)^{5/2}}{5}}\right]\\&=3+{\frac {2}{5}}={\frac {15}{5}}+{\frac {2}{5}}={\frac {17}{5}}\end{aligned}}}