2024/G1/3
3.1 DERIVATIVE OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS
3.2 THE PRODUCT AND QUOTIENT RULES
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {\frac{d}{dx}} [c] = 0 }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {\frac{d}{dx}} [c\cdot f(x)] = c\cdot{\frac{d}{dx}} [f(x)] }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {\frac{d}{dx}} [f(x)\pm g(x)] = {\frac{d}{dx}} [f(x)] \pm {\frac{d}{dx}} [g(x)] }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {\frac{d}{dx}} [x^n] = n \cdot x^n-1 }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {\frac{d}{dx}} [a^x] = \ln(a)a^x }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {\frac{d}{dx}} [e^x] = e^x }
3.3 DERIVATIVE OF TRIGONOMETRIC FUNCTIONS
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \lim_{z\to z} [f(x) g(x]) = c \cdot[ \lim_{x\to a} f(x) ] }
3.4
Point Slope Form
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y - y_1 = m(x - x_1) }