Je m'appelle Christopher Sanchez. f ( x ) = 2 x − 3 {\displaystyle f(x)=2x-3} g ( x ) = x + 2 {\displaystyle g(x)=x+2} ( f ( g ) ) , ( f − g ) , ( f + g ) , ( f x ) {\displaystyle (f(g)),(f-g),(f+g),({\frac {f}{x}})}
d d x [ c ] = 0 {\displaystyle {\frac {d}{dx}}[c]=0} d d x [ c ⋅ f ( x ) ] = c ⋅ d d x [ f ( x ) ] {\displaystyle {\frac {d}{dx}}[c\cdot f(x)]=c\cdot {\frac {d}{dx}}[f(x)]}
d d x [ f ( x ) ± g ( x ) ] = d d x [ f ( x ) ] ± d d x [ g ( x ) ] {\displaystyle {\frac {d}{dx}}[f(x)\pm g(x)]={\frac {d}{dx}}[f(x)]\pm {\frac {d}{dx}}[g(x)]} d d x [ x n ] = n ⋅ x n − 1 {\displaystyle {\frac {d}{dx}}[x^{n}]=n\cdot x^{n}-1} d d x [ a x ] = ln ( a ) a x {\displaystyle {\frac {d}{dx}}[a^{x}]=\ln(a)a^{x}} d d x [ e x ] = e x {\displaystyle {\frac {d}{dx}}[e^{x}]=e^{x}}
y − y 1 = m ( x − x 1 ) {\displaystyle y-y_{1}=m(x-x_{1})}