Je m'appelle Christopher Sanchez. f ( x ) = 2 x − 3 {\displaystyle f(x)=2x-3} g ( x ) = x + 2 {\displaystyle g(x)=x+2} ( f ( g ) ) , ( f − g ) , ( f + g ) , ( f x ) {\displaystyle (f(g)),(f-g),(f+g),({\frac {f}{x}})}
d d x [ c ] = 0 {\displaystyle {\frac {d}{dx}}[c]=0} d d x [ c ⋅ f ( x ) ] = c ⋅ d d x [ f ( x ) ] {\displaystyle {\frac {d}{dx}}[c\cdot f(x)]=c\cdot {\frac {d}{dx}}[f(x)]}
d d x [ f ( x ) ± g ( x ) ] = d d x [ f ( x ) ] ± d d x [ g ( x ) ] {\displaystyle {\frac {d}{dx}}[f(x)\pm g(x)]={\frac {d}{dx}}[f(x)]\pm {\frac {d}{dx}}[g(x)]}
d d x [ / f r a c f g ] = F ′ ( x ) ⋅ g ( x ) − g ′ ( x ) ⋅ f g 2 {\displaystyle {\frac {d}{dx}}[/frac{{\frac {f}{g}}]=F'(x)\cdot g(x)-g'(x)\cdot f}{g^{2}}} d d x [ c ] = 0 {\displaystyle {\frac {d}{dx}}[c]=0}