7.1 Integration By Parts/24

From Mr. V Wiki Math
< 7.1 Integration By Parts
Revision as of 20:31, 1 December 2022 by Merlynm101615@students.laalliance.org (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int u\,dv= u\cdot v -\int v\, du }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} &\int_{0}^{\pi}\underbrace{x^3\cos(x)}_{ \begin{aligned} u&=x^3 \quad \quad dv=\cos(x) \\ dv&=3x^2 \quad \quad v=\sin(x) \end{aligned}} \,dx =x^3\sin(x)-\int_{0}^{\pi} \underbrace{3x^2\sin(x)}_{ \begin{aligned} u&=3x^2 \quad \quad dv=\sin(x) \\ du&=6x \quad \quad v=-\cos(x) \end{aligned}} \,dx= x^3\sin(x)-\bigg[3x^2-\cos(x)-\int_{0}^{\pi}-6x\cos(x)\,dx\bigg]\\ =&x^3\sin(x)-3x^2\cos(x)-\int_{0}^{\pi}\underbrace{6x\cos(x)}_{ \begin{aligned} u&=6x \quad \quad dv=cos(x) \\ du&=6 \quad \quad v=sin(x) \end{aligned}} =x^3\sin(x)+3x^2\cos(x)-\bigg[6x\sin(x)-\int_{0}^{\pi} 6\sin(x)\,dx\bigg]= x^3sin(x)+3x^2\cos(x)-6x\sin(x)-6\cos(x)\bigg|_{0}^{\pi} \end{align} } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} &=[(\pi^3\cdot\sin(\pi)+3(\pi)^2\cdot\cos(\pi)-6(\pi)\cdot\sin(\pi)-6\cos(\pi))-(0^3\cdot\sin(0)+3(0)^2\cdot\cos(0)-6(0)\cdot\sin(0)-6\cos(0))] \\ &=[(\pi\cdot 0 +3\pi^2 \cdot -1 -6 \cdot -1)+6 =-3\pi^2+6+6 = -3\pi^2+12 = -17.60 \end{align} }