7.1 Integration By Parts/49

From Mr. V Wiki Math
Jump to navigation Jump to search

Prove

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{}^{}\left(\tan ^{n}(x)\right)dx=\int _{}^{}\left((\tan ^{2}x)(\tan ^{n-2}x)\right)dx=\int _{}^{}(\sec ^{2}(x)-1)\tan ^{n-2}(x)dx=\int _{}^{}(\sec ^{2}x)(\tan ^{n-2}x)-\tan ^{n-2}xdx=\int _{}^{}(\sec ^{2}x)(\tan ^{n-2}x)-\int _{}^{}\tan ^{n-2}xdx}

Solving for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{}^{} (\sec^{2}x)(\tan^{n-2}x) }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} &u = \tan^{n-2}x \quad &dv= \sec^{2}(x)dx \\[2ex] &du = (n-2)\tan^{n-3}(x) \cdot \sec^{2}(x)dx \quad &v= \tan(x) \\[2ex] \end{align} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx = \tan^{n-2}(x) \cdot \tan(x) - \int_{}^{} (n-2)\tan^{n-3}(x)\sec^{2} \cdot \tan(x)dx \\[2ex] = \tan^{n-1}(x) - \int_{}^{} (n-2)\tan^{n-2}(x)\sec^{2}dx \\[2ex] \tan^{n-1}(x) - \int_{}^{} (n-2)\tan^{n-2}(x)\sec^{2}dx = \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx \\[2ex] \end{align} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} &&&&&&&&&&&&&&&&&&&&&&+\int_{}^{}(n-2)\tan^{n-2}(x) \cdot \sec^{2}(x)dx \quad &&&&&&+\int_{}^{}(n-2)\tan^{n-2}(x) \cdot \sec^{2}(x)dx \end{align} }

Note: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \tan^{2}(x) = \sec^{2}(x)-1 \end{align} }