From Mr. V Wiki Math
\begin{align}
\int_{0}^{\frac{\pi}{2}} sin^5(x) dx &= \frac{5-1}{5} \int_{0}^{\frac{\pi}{2}} sin^3(x) dx \\[2ex]
&= \frac{4}{5}\int_{0}^{\frac{\pi}{2}} (1-cos^2(x)) sin(x) dx \\[2ex]
&= -\int_{1}^{0} (1-u^2)\cdot du \\[2ex]
&= \frac{4}{5} \left[-u + \frac{u^3}{3}\right]\bigg|_{0}^{1} \\[2ex]
& u= cos(x) \\[2ex]
& du= -sin(x) \\[2ex]
& dx= \frac{du}{-sin(x)} \\[2ex]
& \int sin^3(x) dx \\[2ex]
&= -\int 1-u^2 du \\[2ex]
&= \frac{4}{5} [-cos(x) + \frac{1}{3} cos^3(x)] \\[2ex]
&= \frac{4}{5} [-cos(\frac{\pi}{2}) + \frac{1}{3} cos^3 (\frac{\pi}{2}) - (-cos(0) + \frac{1}{3} cos^3 (0)) \\[2ex]
&= \frac{4}{5} [(-1)(0) + \frac{1}{3} (0)^3 - ((-1)(1) +\frac{1}{3} cos^3(1) \\[2ex]
&= \frac{4}{5} [-(-1+ \frac{1}{3}(1)] \\[2ex]
&= \frac{4}{5}[\frac{2}{3}] \\[2ex]
&= \frac{8}{15} \\[2ex]
\end{align}