7.1 Integration By Parts/50

From Mr. V Wiki Math
Jump to navigation Jump to search

Prove

Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int_{}^{} \left(\ln(x)^{n}\right)dx &= x \ln(x)^{n} - \int_{}^{} \left((x \frac{n \ln(x)^{n-1}}{x}) \right)dx \\[2ex] &= x \ln(x)^{n} - \int_{}^{} \left(n \ln(x)^{n-1} \right)dx \\[2ex] &= x \ln(x)^{n} - n \int_{}^{} \left(\ln(x)^{n-1} \right)dx \\[2ex] }