Prove ∫ ( tan n ( x ) ) d x = tan n − 1 x n − 1 − ∫ ( tan n − 2 x ) d x {\displaystyle \int _{}^{}\left(\tan ^{n}(x)\right)dx={\frac {\tan ^{n-1}x}{n-1}}-\int _{}^{}\left(\tan ^{n-2}x\right)dx}
∫ ( tan n ( x ) ) d x = ∫ ( ( tan 2 x ) ( tan n − 2 x ) ) d x = ∫ ( sec 2 ( x ) − 1 ) tan n − 2 ( x ) d x = ∫ ( sec 2 x ) ( tan n − 2 x ) − tan n − 2 x d x = ∫ ( sec 2 x ) ( tan n − 2 x ) − ∫ tan n − 2 x d x {\displaystyle \int _{}^{}\left(\tan ^{n}(x)\right)dx=\int _{}^{}\left((\tan ^{2}x)(\tan ^{n-2}x)\right)dx=\int _{}^{}(\sec ^{2}(x)-1)\tan ^{n-2}(x)dx=\int _{}^{}(\sec ^{2}x)(\tan ^{n-2}x)-\tan ^{n-2}xdx=\int _{}^{}(\sec ^{2}x)(\tan ^{n-2}x)-\int _{}^{}\tan ^{n-2}xdx}
Solving for ∫ ( sec 2 x ) ( tan n − 2 x ) {\displaystyle \int _{}^{}(\sec ^{2}x)(\tan ^{n-2}x)}
u = tan n − 2 x d v = sec 2 ( x ) d x d u = ( n − 2 ) tan n − 3 x ⋅ sec ( x ) tan ( x ) d x v = tan ( x ) {\displaystyle {\begin{aligned}&u=\tan ^{n-2}x\quad dv=\sec ^{2}(x)dx\\[2ex]&du=(n-2)\tan ^{n-3}x\cdot \sec(x)\tan(x)dx\quad v=\tan(x)\\[2ex]\end{aligned}}}
∫ ( ln ( x ) n ) d x = x ln ( x ) n − ∫ ( ( x n ln ( x ) n − 1 x ) ) d x = x ln ( x ) n − ∫ ( n ln ( x ) n − 1 ) d x = x ln ( x ) n − n ∫ ( ln ( x ) n − 1 ) d x {\displaystyle {\begin{aligned}\int _{}^{}\left(\ln(x)^{n}\right)dx&=x\ln(x)^{n}-\int _{}^{}\left((x{\frac {n\ln(x)^{n-1}}{x}})\right)dx\\[2ex]&=x\ln(x)^{n}-\int _{}^{}\left(n\ln(x)^{n-1}\right)dx\\[2ex]&=x\ln(x)^{n}-n\int _{}^{}\left(\ln(x)^{n-1}\right)dx\\[2ex]\end{aligned}}}