7.1 Integration By Parts/26
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{1}^{\sqrt{3}}arctan\left(\frac{1}{x}\right)dx}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle letu =arctan\left(\frac{1}{x}\right)du=dx=du=\frac{1}{1+(1/x)^2}x\frac{-1}{x^2}dx=\frac{-dx}{x^2+1}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{1}^{\sqrt{3}}arctan\frac{1}{x}dx=[xarctan\frac{1}{x}]\bigg|_{0}^{1}+\int_{1}^{\sqrt{3}}\frac{x}{dx}x^2+1=\sqrt{3}\frac{\pi}{6}=\frac{1}{4}=\frac{1}{2}[in(x^2+1)]\bigg|_{1}^{\sqrt{3}}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle =\frac{\pi\sqrt{3}}{6}-\frac{\pi}{4}(in4-in2)=\frac{\pi\sqrt{3}}{6}-\frac{\pi}{2}=\frac{1}{2}in\frac{4}{2}=\frac{\pi\sqrt{3}}{6}-\frac{\pi}{2}+\frac{1}{2}in2}