7.1 Integration By Parts/11

From Mr. V Wiki Math
Jump to navigation Jump to search

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int \text {arctan(4t)}dt }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle u= \text {arctan(4t)} \qquad dv=dt }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle du= \frac{4}{1+(4t)^{2}} dt \qquad v=t }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int \text {arctan(4t)}dt = \text {tarctan(4t)}-4\int \frac{t}{1+16t^{2}} dt = \text {tarctan(4t)}-\frac{4}{32}\int\frac{1}{u}\\ [1ex] u=1+16t^{2} \\[1ex] du=32t dt \\[1ex] \frac{1}{32}du=t dt \end{align} }


&= \text {tarctan(4t)} \\[1ex] &= \pi\left[\left(4(2)-(2)^2+\frac{1}{12}(2)^3\right)-\left(4(1)-(1)^2+\frac{1}{12}(1)^3\right)\right] \\[2ex] &= \pi\left[\left(8-4+\frac{8}{12}\right)-\left(4-1+\frac{1}{12}\right)\right] \\[2ex] &= \pi\left[4+\frac{8}{12}-3-\frac{1}{12}\right]= \pi\left[1+\frac{7}{12}\right] \\[2ex] &= \pi\left[\frac{12}{12}+\frac{7}{12}\right]= \pi\left[\frac{19}{12}\right] \\[2ex] &= \frac{19\pi}{12}

\end{align} </math>