7.1 Integration By Parts/54
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y=5\ln(x) , y=x\ln(x) }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} 5\ln(x) &=x\ln(x)\\[1ex] &x=5 \\[1ex] &x=1 \\[1ex] 5\ln(2) > 2\ln(2) \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{1}^{5}\left(5\ln(x) -x\ln(x) \right)dx = \int_{1}^{5} \left(5\ln(x) \right)dx - \int_{1}^{5} \left(x\ln(x) \right)dx }
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{1}^{5}\left(5\ln(x)\right)dx=5\int _{1}^{5}\left(\ln(x)\right)dx=5\left(x\ln(x)-\int _{1}^{5}\left({\frac {x}{x}}\right)dx\right)=5\left(x\ln(x)-\int _{1}^{5}x{\bigg |}_{1}^{5}\right)}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= \ln(x) \quad dv= 1 dx \\ du &= \frac{1}{x} dx \quad v=x \\ \end{align} }