∫ ( ln ( x ) n ) d x = x ( ln ( x ) n ) − n ∫ ( ln ( x ) n − 1 ) d x {\displaystyle \int _{}^{}\left(\ln(x)^{n}\right)dx=x\left(\ln(x)^{n}\right)-n\int _{}^{}\left(\ln(x)^{n-1}\right)dx}