6.2 Volumes/1
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} y=2-\frac{1}{2}x, x-axis\\[1ex] y=0\\[1ex] x=1\\[1ex] x=2\\ \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \pi\int_1^2\left[(2-\frac{1}{2}^2)\right]dy & = \pi\int_0^1\left[(1-(1-2y^2+y^4)\right]dy = \pi\int_0^1\left[(2y^2-y^4)\right]dy \\[2ex] &= \pi\left[\frac{2y^3}{3}-\frac{y^5}{5}\right]\Bigg|_0^1 \\[2ex] &= \pi\left[\frac{2}{3}-\frac{1}{5}\right]= \pi\left[\frac{10}{15}-\frac{3}{15}\right] \\[2ex] &= \frac{7\pi}{15} \end{align} }