5.5 The Substitution Rule/61
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{13}\frac{1}{\sqrt[3]{(1+2x)^2}}\,dx }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= 1+2x \\[2ex] du &= 2dx \\[2ex] \frac{1}{2}du &= dx \\[2ex] \end{align} }
New upper limit: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 27 = 1+2(13)}
New lower limit: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 = 1+2(0)}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{0}^{13}\frac{1}{\sqrt[3]{(1+2x)^2}}\,dx &= \int_{0}^{13}\frac{1}{\sqrt[3]{(1+2x)^2}}\,(dx) \\[2ex] &= \int_{1}^{27}\frac{1}{\sqrt[3]{u^2}}\left(\frac{1}{2}du\right) = \frac{1}{2}\int_{1}^{27} {u}^{-2/3}du \\[2ex] &= \frac{1}{2}\frac{{u}^{1/3}}{\frac{1}{3}}\bigg|_{1}^{27} = \frac{3}{2}{u}^{1/3}\bigg|_{1}^{27}\\[2ex] &= \frac{3}{2}{(27)}^{1/3} - \frac{3}{2}{(1)}^{1/3} \\[2ex] &= \frac{9}{2}-\frac{3}{2}\\[2ex] &= 3 \end{align} }