5.4 Indefinite Integrals and the Net Change Theorem/11

From Mr. V Wiki Math
< 5.4 Indefinite Integrals and the Net Change Theorem
Revision as of 19:39, 21 September 2022 by Dvaezazizi@laalliance.org (talk | contribs) (Protected "5.4 Indefinite Integrals and the Net Change Theorem/11" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int\frac{x^3-2\sqrt{x}}{x}dx &= \int\left(\frac{x^3}{x}-\frac{2\sqrt{x}}{x}\right)dx = \int\left(x^2-2x^{\frac{1}{2}-1}\right)dx = \int\left(x^2-2x^{-\frac{1}{2}}\right)dx \\[2ex] &= \frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C \\[2ex] &= \frac{x^3}{3}-4\sqrt{x}+C \end{align} }