5.4 Indefinite Integrals and the Net Change Theorem/41

From Mr. V Wiki Math
Jump to navigation Jump to search

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{0}^\frac{1}\sqrt{3}\frac{t^2-1}{t^4-1} dt &= \int_{0}^\frac{1}\sqrt{3} \frac{(t^2-1)}{(t^2-1)(t^2+1)} dt=\int_{0}^\frac{1}\sqrt{3} \frac{1}{(t^2+1)}dt \\[2ex] &=\arctan{(t)}\bigg|_{0}^{\frac{1}{\sqrt{3}}} = \arctan\left(\frac{1}{\sqrt{3}}\right)-[\arctan(0)] \\[2ex] &=\frac{\pi}{6}-0=\frac{\pi}{6} \end{align} }