5.5 The Substitution Rule/65

From Mr. V Wiki Math
Jump to navigation Jump to search

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{1}^{2} x \sqrt{x-1} dx = \int_{0}^{1} u+1 \sqrt{u}du = \int_{0}^{1}(u + 1)(\sqrt{u}) = \int_{0}^{1} u^ \frac{3}{2} + \sqrt{u}du = \frac{2}{5} U^\frac{5}{2} + \frac{2}{3} U^\frac{3}{2}| _{0}^{1} =\frac{2}{5} + \frac{2}{3} = \frac{16}{15} }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= x-1 \\ u+1 &= x \\[2ex] du &= 2 dx \\[2ex] \frac{1}{2} du &= dx \end{align} }


Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int _{1}^{2}x{\sqrt {x-1}}dx&=\int _{0}^{1}u+1{\sqrt {u}}du=\int _{0}^{1}(u+1)({\sqrt {u}})=\int _{0}^{1}u^{\frac {3}{2}}+{\sqrt {u}}du\\[2ex]&={\frac {2}{5}}U^{\frac {5}{2}}+{\frac {2}{3}}U^{\frac {3}{2}}|_{0}^{1}={\frac {2}{5}}+{\frac {2}{3}}\\[2ex]&={\frac {16}{15}}\\[2ex]\end{aligned}}}