5.3 The Fundamental Theorem of Calculus/27
< 5.3 The Fundamental Theorem of Calculus
Jump to navigation
Jump to search
Revision as of 21:16, 6 September 2022 by Dvaezazizi@laalliance.org (talk | contribs)
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int _{0}^{2}x(2+x^{5})\,dx&=\int _{0}^{2}(2x+x^{6})\,dx=\int _{0}^{2}(2x+x^{6})\,dx\\[2ex]&=\left({\frac {2x^{1+1}}{1+1}}+{\frac {x^{6+1}}{6+1}}\right){\bigg |}_{0}^{2}=\left(x^{2}+{\frac {x^{7}}{7}}\right){\bigg |}_{0}^{2}\\[2ex]&=\left((2)^{2}-{\frac {(2)^{7}}{7}}\right)-\left((0)^{2}+{\frac {(0)^{7}}{7}}\right)\\[2ex]&=\left[4+{\frac {2^{7}}{7}}\right]-[0]\\[2ex]&={\frac {156}{7}}\end{aligned}}}