5.3 The Fundamental Theorem of Calculus/15

From Mr. V Wiki Math
< 5.3 The Fundamental Theorem of Calculus
Revision as of 20:15, 6 September 2022 by Dvaezazizi@laalliance.org (talk | contribs) (Protected "5.3 The Fundamental Theorem of Calculus/15" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y=\int_{0}^{tan(x)}\sqrt{t+\sqrt t}\,dt}


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{d}{dx}(y)= \frac{d}{dx}\left[\int_{0}^{tan(x)}\sqrt{t+\sqrt t}\,dt\right]=\sec^{2}(x)\cdot\sqrt{tan(x)+\sqrt{tan(x)}})-0\cdot\sqrt{0+\sqrt 0}\,=\sec^{2}(x)\cdot\sqrt{tan(x)+\sqrt{tan(x)}}) \end{align} }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \text{Therefore, } y' = \sec^{2}(x)\cdot\sqrt{tan(x)+\sqrt{tan(x)}}) }