5.3 The Fundamental Theorem of Calculus
Revision as of 19:45, 6 September 2022 by Dvaezazizi@laalliance.org (talk | contribs)
Lecture
Lecture notes
- 1. FTC #1
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\left[\int_{a(x)}^{b(x)}f(t)\,dt\right]=b'(x)\cdot f(b(x))-a'(x)\cdot f(a(x))}
- 2. FTC #2
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{a}^{b}f(x)\,dx=F(b)-F(a)}
Where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\left[F(x)\right]=f(x)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle F(x)} is called the antiderivative of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f(x)}
Solutions
Mr. V solutions: 8, 20, 28
1 3 5 7 <html>✅</html> 8 9 10 11 13 15 17 19 20 21 23 25 27 28 29 31 33 35 37 39 41 53