5.4 Indefinite Integrals and the Net Change Theorem/33
< 5.4 Indefinite Integrals and the Net Change Theorem
Jump to navigation
Jump to search
Revision as of 21:38, 3 September 2022 by Kattieh70488@students.laalliance.org (talk | contribs)
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int _{1}^{4}{\sqrt {\frac {5}{x}}}dy&=\int _{1}^{4}{\frac {\sqrt {5}}{\sqrt {x}}}dx=5^{\frac {1}{2}}\int _{1}^{4}x^{\frac {-1}{2}}dx\\[2ex]&={\sqrt {5}}\times 2x^{\frac {1}{2}}{\bigg |}_{1}^{4}={\sqrt {5}}\times 2{\sqrt {x}}{\bigg |}_{1}^{4}=2{\sqrt {5x}}{\bigg |}_{1}^{4}\\[2ex]&=2{\sqrt {5\times 4}}-2{\sqrt {5\times 1}}\\[2ex]&=2{\sqrt {20}}-2{\sqrt {5}}=4{\sqrt {5}}-2{\sqrt {5}}=2{\sqrt {5}}\end{aligned}}}