5.4 Indefinite Integrals and the Net Change Theorem/37
< 5.4 Indefinite Integrals and the Net Change Theorem
Jump to navigation
Jump to search
Revision as of 06:07, 3 September 2022 by Josuem95981@students.laalliance.org (talk | contribs)
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}&\int _{0}^{\frac {\pi }{4}}\left({\frac {1+\cos ^{2}(\theta )}{\cos ^{2}(\theta )}}\right)d\theta \ =\ \int _{0}^{\frac {\pi }{4}}{\frac {1}{\cos ^{2}(\theta )}}+{\frac {\cos ^{2}(\theta )}{\cos ^{2}(\theta )}}\ =\ \int _{0}^{\frac {\pi }{4}}{\frac {1}{\cos ^{2}(\theta )}}+1\\[2ex]&=\tan({\theta })+\theta \ {\bigg |}_{0}^{\frac {\pi }{4}}\\[2ex]&=\tan({\frac {\pi }{4}})+{\frac {\pi }{4}}\\[2ex]&=1+{\frac {\pi }{4}}\end{aligned}}}