5.4 Indefinite Integrals and the Net Change Theorem/21
< 5.4 Indefinite Integrals and the Net Change Theorem
Jump to navigation
Jump to search
Revision as of 19:21, 1 September 2022 by Kimberlyr70044@students.laalliance.org (talk | contribs)
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int _{0}^{2}(6x^{2}-4x+5)dx={\frac {6x^{2+1}}{2+1}}-{\frac {4x^{1+1}}{1+1}}+{5x}{\bigg |}_{0}^{2}&={\frac {6x^{3}}{3}}-{\frac {4x^{2}}{2}}+{5x}{\bigg |}_{0}^{2}=2x^{3}-2x^{2}+{5x}{\bigg |}_{0}^{2}&=[2(2)^{3}-2(2)^{2}+{5(2)}]-[2(0)^{3}-2(0)^{2}+{5(0)}]=16-18+0&=18\end{aligned}}}