5.3 The Fundamental Theorem of Calculus/41
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int\limits_{0}^{\pi}f(x)dx \quad \text{where} \; f(x) = \begin{cases} \sin(x) & 0 \le x < \frac{\pi}{2} \\ \cos(x) & \frac{\pi}{2} \le x \le \pi \end{cases} }
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle =\int \limits _{0}^{\frac {\pi }{2}}f(x)dx+\int \limits _{\frac {\pi }{2}}^{\pi }f(x)dx=\int \limits _{0}^{\frac {\pi }{2}}\sin(x)dx+\int \limits _{\frac {\pi }{2}}^{\pi }\cos(x)dx=-\cos(x){\bigg |}_{0}^{\frac {\pi }{2}}+\sin(x){\bigg |}_{{\frac {\pi }{(}}2)}^{\pi }}