5.4 Indefinite Integrals and the Net Change Theorem/1

From Mr. V Wiki Math
Jump to navigation Jump to search

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}a&=x^{2}+1&x&={\tfrac {1}{\sqrt {2}}}(u+v)\\[0.6ex]v&={\tfrac {1}{\sqrt {2}}}(x-y)\qquad &y&={\tfrac {1}{\sqrt {2}}}(u-v)\end{aligned}}}

let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a=x^2+1} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle b=a^{1/2}} then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{da}{dx}=2x \text{ and } \frac{db}{da}=\frac{1}{2}a^{-1/2}}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{da}{dx}\cdot\frac{db}{da} = \left(2x\right)\left(\frac{1}{2}a^{-1/2}\right) = xa^{-1/2} = x(x^2+1)^{-1/2} = \frac{x}{\sqrt{x^2+1}}}