Math
Basics
To render any math equation, the math equation must be between <math></math> i.e., <math>f(x)=x^2</math> gives .
Common math commands
Superscript & Subscript
Superscript: <math>x^{5+y}</math> gives
Subscript: <math>x_{5+t}</math> gives
Together: <math>x_{5+t}^{5+y}</math> gives
Fractions, radicals and brackets
Fractions: <math>\frac{1}{x}</math> gives
Bad brackets, parentheses, etc.: <math>(\frac{1}{x})^3</math> gives
Correct brackets, parentheses, etc.: <math>\left(\frac{1}{x}\right)^3</math> gives
Square root: <math>\sqrt{x+1}</math> gives
General radical: <math>\sqrt[3]{64}=4</math> gives
Trig. & Log Functions
Sin, cos, tan, etc.: <math>\sin{(\theta)}</math> gives
Arcsin, arccos, arctan, etc.: <math>\arcsin{(\theta)}</math> gives Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \arcsin{(\theta)}}
Log: <math>\log_{5}{5^2}=2</math> gives Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \log_{5}{5^2}=2}
Ln: <math>\ln{e^3}=3</math> gives Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ln{e^3}=3}
Calculus
Sum: <math>\sum_{i=1}^{n}i=\frac{n(n+1)}{2}</math> gives Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sum_{i=1}^{n}i=\frac{n(n+1)}{2}}
Limit: <math>\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}</math> gives Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \lim_{h\to 0}\frac{f(x+h)-f(x)}{h}}
Derivative: <math>\frac{d}{dx}\left[\frac{1}{x}\right]=-\frac{1}{x^2}</math> gives Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\left[\frac{1}{x}\right]=-\frac{1}{x^2}}
Integral: <math>\int_{1}^{x+1}\frac{1}{r}dr</math> gives Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{1}^{x+1}\frac{1}{r}dr}
Limit bar: <math>\bigg|_{0}^{1}</math> gives Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \bigg|_{0}^{1}}
Advanced
Sometimes it might be necessary to break up and align a long equation:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{0}^{1}\left(3+x\sqrt{x}\right)dx &= \int_{0}^{1}\left(3+x^{1}{x}^{\frac{1}{2}}\right)dx = \int_{0}^{1}\left(3+x^{1+\frac{1}{2}}\right)dx = \int_{0}^{1}\left(3+x^{\frac{3}{2}}\right)dx \\[2ex] &= 3x+\frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1}\bigg|_{0}^{1} = 3x+\frac{x^{\tfrac{5}{2}}}{\frac{5}{2}}\bigg|_{0}^{1} = 3x+\frac{2x^{\frac{5}{2}}}{5}\bigg|_{0}^{1} \\[2ex] &= \left[3(1)+\frac{2(1)^{5/2}}{5}\right]-\left[3(0)+\frac{2(0)^{5/2}}{5}\right] \\[2ex] &= 3+\frac{2}{5} = \frac{15}{5}+\frac{2}{5} = \frac{17}{5} \end{align} }
To do this use &= where the equation = should align and put \begin{align} and \end{align} at the start and end of <math></math>. Finally use \\[2ex] to create the proper space between the lines (if they're too close) and to push the rest of the equation to the next line. The code below renders what is seen above:
<math>
\begin{align}
\int_{0}^{1}\left(3+x\sqrt{x}\right)dx &= \int_{0}^{1}\left(3+x^{1}{x}^{\frac{1}{2}}\right)dx = \int_{0}^{1}\left(3+x^{1+\frac{1}{2}}\right)dx = \int_{0}^{1}\left(3+x^{\frac{3}{2}}\right)dx \\[2ex]
&= 3x+\frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1}\bigg|_{0}^{1} = 3x+\frac{x^{\tfrac{5}{2}}}{\frac{5}{2}}\bigg|_{0}^{1} = 3x+\frac{2x^{\frac{5}{2}}}{5}\bigg|_{0}^{1} \\[2ex]
&= \left[3(1)+\frac{2(1)^{5/2}}{5}\right]-\left[3(0)+\frac{2(0)^{5/2}}{5}\right] \\[2ex]
&= 3+\frac{2}{5} = \frac{15}{5}+\frac{2}{5} = \frac{17}{5}
\end{align}
</math>