From Mr. V Wiki Math

1. The derivative of a constant is 0 =
2.
3.
4.
5.
6.

1)
2)
3)
4)
5) ![{\displaystyle {\frac {d}{dx}}[{\sqrt {(}}x)]={\frac {d}{dx}}[x^{\frac {1}{2}}]={\frac {1}{2x}}^{{\frac {1}{2}}-{\frac {2}{2}}}={\frac {1}{2x}}^{\frac {-1}{2}}={\frac {1}{2{\sqrt {(}}x)}}}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/1c411e38ef9f89182f66917c37201e6130664cf0)
A1. ![{\displaystyle {{\sqrt[{n}]{(}}x^{m})}=({\sqrt[{n}]{x}})^{m}=x^{\frac {m}{n}}}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/ce6d6bedaca676fa7829acd50074e0944ba9e703)
6) ![{\displaystyle {\frac {d}{dx}}[{{\sqrt[{3}]{(}}x^{2})}]={\frac {d}{dx}}[x^{\frac {2}{3}}]={\frac {2}{3}}\cdot x^{\frac {-1}{3}}={{\frac {2}{3}}\cdot {\sqrt[{3}]{(}}x)}}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/9796dc4deb3c9107b1f71ac88d1ba4690768f8c5)
7) ![{\displaystyle {\frac {d}{dx}}[({\sqrt[{5}]{x}})^{7}]={\frac {d}{dx}}[{\frac {7}{x^{5}}}]={\frac {7}{5}}\cdot x^{{\frac {7}{5}}-1}={\frac {7}{5}}\cdot x^{\frac {2}{5}}={\frac {7}{5}}\cdot {{\sqrt[{5}]{x}}^{2}}}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/34b4847ab8363f555bd457a635ad5e8fa7fce59c)
8) ![{\displaystyle {\frac {d}{dx}}[3x^{10}+e^{x}-5^{x}]=30x^{9}+e^{x}-ln(5)\cdot 5^{x}}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/e83248892037ceff9cf4ab579b30339746369d31)
9) ![{\displaystyle {\frac {d}{dx}}[{\frac {1}{x}}]={\frac {d}{dx}}[x^{-1}]=-1\cdot x^{-1-1}=-x^{-2}=-{\frac {1}{x^{2}}}}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/09cd778938688031bb67da7c7b1d0280af0b2fde)

1) ![{\displaystyle {\frac {d}{dx}}[\pi +3x-5x^{3}]=0+3-15x^{2}}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/48828e46be3f989f946aa536b1cdb21fe2951f4f)
2) ![{\displaystyle {\frac {d}{dx}}[e^{x}+3^{x}-5\cdot 2^{x}]=e^{x}+ln(3)\cdot 3^{x}-5\cdot ln(2)\cdot 2^{x}}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/bbbeada44288ec40b0b8b05864440e2cb48a9ed2)
3) ![{\displaystyle {\frac {d}{dx}}[x^{5}-6x^{3}+2x+5]=5x^{4}-18x^{2}+2+0}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/b3b04b00ea75f30e2904096be8148706fc2806e9)
4) ![{\displaystyle {\frac {d}{dx}}[x{\sqrt {x}}]={\frac {d}{dx}}[x^{1}\cdot x^{\frac {1}{2}}]={\frac {d}{dx}}[x^{\frac {3}{2}}]={\frac {3}{2}}\cdot x^{{\frac {3}{2}}-1}={\frac {3}{2x}}^{\frac {3}{2}}-{\frac {2}{2}}={\frac {3}{2x}}^{\frac {1}{2}}={\frac {3}{2}}\cdot {\sqrt {x}}}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/5ed190e4bfaa36f04bfd1bb014904aaf06e6e46d)
5) Failed to parse (syntax error): {\displaystyle {\frac{d}{dx}} [{\frac{3}{x}} + \sqrt 2 - 5^{x}] = 3 \cdot {\frac{d}{dx}} [{\frac{1}{x}}] = 3 \cdot {\frac{d}{dx}} [x^{-1}] = (-1)(3) \cdot x^{-1-1} = -3 \cdot x^{-2} = {\frac{3}{2x}} + 0 -ln(-5) \cdot -5^{x} = -{\frac{3}{x^{2}} - ln(-5) \cdot -5^{x} }