2024/G1/2
2.2 THE LIMIT OF A FUNCTION
Notes go here for 2.2... example:
Limits are ALWAYS near the number, NEVER on the number.
2.3 CALCULATING LIMITS USING THE LIMIT LAWS
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\to a}=c\cdot [\lim _{x\to a}f(x)]}
2.5 CONTINUITY
2.6 LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES
Horizontal Asymptote or H.A
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\to \infty }}
2.7 DERIVATIVES AND RATES OF CHANGE
To find the Tangent Line we use
We later apply the points on which we want to find the slope.
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f(x)=x^{2}f'(x)=\lim _{h\to 0}{\frac {f(x+h)-f(x)}{h}}=\lim _{h\to 0}{\frac {(x+h)^{2}-x^{2}}{h}}=\lim _{h\to 0}{\frac {x^{2}+2xh+h^{2}-x^{2})}{h}}=\lim _{h\to 0}{\frac {h^{2}+2xh}{h}}=\lim _{h\to 0}{\frac {({\cancel {h}})(h+2x)}{\cancel {h}}}}
2.8 THE DERIVATIVE AS A FUNCTION