Prove ∫ ( tan n ( x ) ) d x = tan n − 1 x n − 1 − ∫ ( tan n − 2 x ) d x {\displaystyle \int _{}^{}\left(\tan ^{n}(x)\right)dx={\frac {\tan ^{n-1}x}{n-1}}-\int _{}^{}\left(\tan ^{n-2}x\right)dx}
Note: tan 2 ( x ) = sec 2 ( x ) − 1 {\displaystyle {\begin{aligned}\tan ^{2}(x)=\sec ^{2}(x)-1\end{aligned}}}
∫ ( tan n ( x ) ) d x = ∫ ( ( tan 2 x ) ( tan n − 2 x ) ) d x = ∫ ( sec 2 ( x ) − 1 ) tan n − 2 ( x ) d x = ∫ ( sec 2 x ) ( tan n − 2 x ) − tan n − 2 x d x = ∫ ( sec 2 x ) ( tan n − 2 x ) − ∫ tan n − 2 ( x ) d x {\displaystyle \int _{}^{}\left(\tan ^{n}(x)\right)dx=\int _{}^{}\left((\tan ^{2}x)(\tan ^{n-2}x)\right)dx=\int _{}^{}(\sec ^{2}(x)-1)\tan ^{n-2}(x)dx=\int _{}^{}(\sec ^{2}x)(\tan ^{n-2}x)-\tan ^{n-2}xdx=\int _{}^{}(\sec ^{2}x)(\tan ^{n-2}x)-\int _{}^{}\tan ^{n-2}(x)dx}
Solving for ∫ ( sec 2 x ) ( tan n − 2 x ) {\displaystyle \int _{}^{}(\sec ^{2}x)(\tan ^{n-2}x)}
u = tan n − 2 x d v = sec 2 ( x ) d x d u = ( n − 2 ) tan n − 3 ( x ) ⋅ sec 2 ( x ) d x v = tan ( x ) {\displaystyle {\begin{aligned}&u=\tan ^{n-2}x\quad &dv=\sec ^{2}(x)dx\\[2ex]&du=(n-2)\tan ^{n-3}(x)\cdot \sec ^{2}(x)dx\quad &v=\tan(x)\\[2ex]\end{aligned}}}
∫ ( sec 2 x ) ( tan n − 2 x ) d x = tan n − 2 ( x ) ⋅ tan ( x ) − ∫ ( n − 2 ) tan n − 3 ( x ) sec 2 ⋅ tan ( x ) d x = tan n − 1 ( x ) − ∫ ( n − 2 ) tan n − 2 ( x ) sec 2 d x tan n − 1 ( x ) − ∫ ( n − 2 ) tan n − 2 ( x ) sec 2 d x = ∫ ( sec 2 x ) ( tan n − 2 x ) d x {\displaystyle {\begin{aligned}\int _{}^{}(\sec ^{2}x)(\tan ^{n-2}x)dx=\tan ^{n-2}(x)\cdot \tan(x)-\int _{}^{}(n-2)\tan ^{n-3}(x)\sec ^{2}\cdot \tan(x)dx\\[2ex]=\tan ^{n-1}(x)-\int _{}^{}(n-2)\tan ^{n-2}(x)\sec ^{2}dx\\[2ex]\tan ^{n-1}(x)-\int _{}^{}(n-2)\tan ^{n-2}(x)\sec ^{2}dx=\int _{}^{}(\sec ^{2}x)(\tan ^{n-2}x)dx\\[2ex]\end{aligned}}}
+ ∫ ( n − 2 ) tan n − 2 ( x ) ⋅ sec 2 ( x ) d x + ∫ ( n − 2 ) tan n − 2 ( x ) ⋅ sec 2 ( x ) d x {\displaystyle {\begin{aligned}&&&&&&&&&&&+\int _{}^{}(n-2)\tan ^{n-2}(x)\cdot \sec ^{2}(x)dx\quad &&&&&&+\int _{}^{}(n-2)\tan ^{n-2}(x)\cdot \sec ^{2}(x)dx\end{aligned}}}
tan n − 1 ( x ) n − 1 = ( n − 1 ) n − 1 ∫ ( sec 2 x ) ( tan n − 2 x ) d x {\displaystyle {\begin{aligned}{\frac {\tan ^{n-1}(x)}{n-1}}={\frac {(n-1)}{n-1}}\int _{}^{}(\sec ^{2}x)(\tan ^{n-2}x)dx\end{aligned}}}
Bring down:
− ∫ tan n − 2 ( x ) d x {\displaystyle {\begin{aligned}-\int _{}^{}\tan ^{n-2}(x)dx\end{aligned}}}
= tan n − 1 ( x ) n − 1 − ∫ tan n − 2 ( x ) d x {\displaystyle {\begin{aligned}={\frac {\tan ^{n-1}(x)}{n-1}}-\int _{}^{}\tan ^{n-2}(x)dx\end{aligned}}}