Prove ∫ sec n ( x ) d x = tan ( x ) ⋅ sec n − 2 ( x ) n − 1 + n − 2 n − 1 ∫ sec n − 2 ( x ) d x {\displaystyle \int _{}^{}\sec ^{n}(x)dx={\frac {\tan(x)\cdot \sec ^{n-2}(x)}{n-1}}+{\frac {n-2}{n-1}}\int _{}^{}\sec ^{n-2}(x)dx}
∫ sec n ( x ) d x = ∫ sec 2 ( x ) ⋅ sec n − 2 ( x ) d x {\displaystyle \int _{}^{}\sec ^{n}(x)dx=\int _{}^{}\sec ^{2}(x)\cdot \sec ^{n-2}(x)dx}
u = sec n − 2 ( x ) d v = sec 2 ( x ) d x d u = ( n − 2 ) sec n − 3 ⋅ sec ( x ) tan ( x ) d x v = tan ( x ) {\displaystyle {\begin{aligned}&u=\sec ^{n-2}(x)\quad &dv=\sec ^{2}(x)dx\\[2ex]&du=(n-2)\sec ^{n-3}\cdot \sec(x)\tan(x)dx\quad &v=\tan(x)\\[2ex]\end{aligned}}}
∫ sec 2 ( x ) ⋅ sec n − 2 ( x ) d x = sec n − 2 ( x ) ⋅ tan ( x ) − ∫ [ ( n − 2 ) sec n − 3 ( x ) ⋅ sec ( x ) tan ( x ) ] ⋅ tan ( x ) d x = sec n − 2 ( x ) ⋅ tan ( x ) − ( n − 2 ) ∫ [ sec n − 2 ( x ) ⋅ tan 2 ( x ) ] d x = sec n − 2 ( x ) ⋅ tan ( x ) − ( n − 2 ) ∫ sec n − 2 ( x ) ⋅ [ sec 2 ( x ) − 1 ] d x = sec n − 2 ( x ) ⋅ tan ( x ) − ( n − 2 ) ∫ [ sec n ( x ) − sec n − 2 ( x ) ] d x {\displaystyle {\begin{aligned}\int _{}^{}\sec ^{2}(x)\cdot \sec ^{n-2}(x)dx&=\sec ^{n-2}(x)\cdot \tan(x)-\int _{}^{}\left[(n-2)\sec ^{n-3}(x)\cdot \sec(x)\tan(x)\right]\cdot \tan(x)dx\\[2ex]&=\sec ^{n-2}(x)\cdot \tan(x)-(n-2)\int _{}^{}\left[\sec ^{n-2}(x)\cdot \tan ^{2}(x)\right]dx\\[2ex]&=\sec ^{n-2}(x)\cdot \tan(x)-(n-2)\int _{}^{}\sec ^{n-2}(x)\cdot [\sec ^{2}(x)-1]dx\\[2ex]&=\sec ^{n-2}(x)\cdot \tan(x)-(n-2)\int _{}^{}\left[\sec ^{n}(x)-\sec ^{n-2}(x)\right]dx\\[2ex]\end{aligned}}}
∫ sec n ( x ) d x = sec n − 2 ( x ) ⋅ tan ( x ) − ( n − 2 ) ∫ sec n ( x ) d x + ( n − 2 ) ∫ sec n − 2 ( x ) d x {\displaystyle {\begin{aligned}\int _{}^{}\sec ^{n}(x)dx=\sec ^{n-2}(x)\cdot \tan(x)-(n-2)\int _{}^{}\sec ^{n}(x)dx+(n-2)\int _{}^{}\sec ^{n-2}(x)dx\end{aligned}}}
+ ( n − 2 ) ∫ sec 2 ( x ) d x + ( n − 2 ) ∫ sec 2 ( x ) d x {\displaystyle {\begin{aligned}&+(n-2)\int _{}^{}\sec ^{2}(x)dx\quad &&&+(n-2)\int _{}^{}\sec ^{2}(x)dx\end{aligned}}}
( n − 1 ) ∫ sec n ( x ) d x = sec 2 ( x ) tan ( x ) + ( n − 2 ) ∫ sec n − 2 ( x ) d x = sec n − 2 ( x ) tan ( x ) n − 1 + n − 2 n − 1 ∫ sec n − 2 ( x ) d x {\displaystyle {\begin{aligned}(n-1)\int _{}^{}\sec ^{n}(x)dx=\sec ^{2}(x)\tan(x)+(n-2)\int _{}^{}\sec ^{n-2}(x)dx\\[2ex]&={\frac {\sec ^{n-2}(x)\tan(x)}{n-1}}+{\frac {n-2}{n-1}}\int _{}^{}\sec ^{n-2}(x)dx\\[2ex]\end{aligned}}}