7.1 Integration By Parts/50

From Mr. V Wiki Math
Jump to navigation Jump to search

Prove Failed to parse (unknown function "\tanx"): {\displaystyle \int_{}^{} \sec^{n}x = \frac{\tanx \sec^{n-2}x}{n-1} }

<math> \begin{align}

\int_{}^{} \left(\ln(x)^{n}\right)dx &= x \ln(x)^{n} - \int_{}^{} \left((x \frac{n \ln(x)^{n-1}}{x}) \right)dx \\[2ex] &= x \ln(x)^{n} - \int_{}^{} \left(n \ln(x)^{n-1} \right)dx \\[2ex] &= x \ln(x)^{n} - n \int_{}^{} \left(\ln(x)^{n-1} \right)dx \\[2ex]