∫ sec 3 ( x ) tan ( x ) {\displaystyle \int \sec ^{3}(x)\tan(x)\,}
u=\sec(x)</math>
d u = sec ( x ) tan ( x ) d x {\displaystyle du=\sec(x)\tan(x)\,dx}
= ∫ u 2 d u {\displaystyle =\int u^{2}\,du}
= 1 3 u 3 + c {\displaystyle ={\frac {1}{3}}u^{3}\,+\,c}