6.2 Trigonometric Functions: Unit Circle Approach/17

From Mr. V Wiki Math
Jump to navigation Jump to search

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \sin{(t)} &= \frac{\sqrt{2}}{2} & \csc{(t)} &= \frac{1}{\frac{\sqrt{2}}{2}} \cdot{2} = \frac{2}{\sqrt{2}} \cdot{\sqrt{2}} \\[2ex] \cos{(t)} &= -\frac{\sqrt{2}}{2} & \sec{(t)} &= \frac{2}{1} = 2\\[2ex] \tan{(t)} &= \frac{\frac{\sqrt{2}}{2}}{-\frac{\sqrt{2}}{2}} \cdot{2} = -\frac{\sqrt{2}} \sqrt{2} = -1 & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex] \end{align} }