Prove ∫ ( tan n ( x ) ) d x = tan n − 1 x n − 1 − ∫ ( tan n − 2 x ) d x {\displaystyle \int _{}^{}\left(\tan ^{n}(x)\right)dx={\frac {\tan ^{n-1}x}{n-1}}-\int _{}^{}\left(\tan ^{n-2}x\right)dx}
∫ ( ln ( x ) n ) d x {\displaystyle \int _{}^{}\left(\ln(x)^{n}\right)dx}
u = ln ( x ) n d v = 1 d x d u = 1 d x v = x {\displaystyle {\begin{aligned}&u=\ln(x)^{n}\quad dv=1dx\\[2ex]&du=1dx\quad v=x\\[2ex]\end{aligned}}}
∫ ( ln ( x ) n ) d x = x ln ( x ) n − ∫ ( ( x n ln ( x ) n − 1 x ) ) d x = x ln ( x ) n − ∫ ( n ln ( x ) n − 1 ) d x = x ln ( x ) n − n ∫ ( ln ( x ) n − 1 ) d x {\displaystyle {\begin{aligned}\int _{}^{}\left(\ln(x)^{n}\right)dx&=x\ln(x)^{n}-\int _{}^{}\left((x{\frac {n\ln(x)^{n-1}}{x}})\right)dx\\[2ex]&=x\ln(x)^{n}-\int _{}^{}\left(n\ln(x)^{n-1}\right)dx\\[2ex]&=x\ln(x)^{n}-n\int _{}^{}\left(\ln(x)^{n-1}\right)dx\\[2ex]\end{aligned}}}