5.3 The Fundamental Theorem of Calculus/41

From Mr. V Wiki Math
Jump to navigation Jump to search


Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int _{0}^{\pi }f(x)\,dx=\int _{0}^{\frac {\pi }{2}}f(x)\,dx+\int _{\frac {\pi }{2}}^{\pi }f(x)\,dx&=\int _{0}^{\frac {\pi }{2}}\sin(x)\,dx+\int _{\frac {\pi }{2}}^{\pi }\cos(x)\,dx\\[2ex]&=-\cos(x){\bigg |}_{0}^{\frac {\pi }{2}}+\sin(x){\bigg |}_{\frac {\pi }{2}}^{\pi }=\left[-\cos \left({\frac {\pi }{2}}\right)+\cos(0)\right]+\left[\sin(\pi )-\sin \left({\frac {\pi }{2}}\right)\right]\\[2ex]&=0+1+0-1=0\end{aligned}}}