5.3 The Fundamental Theorem of Calculus/28: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 5: | Line 5: | ||
= \int_{0}^{1}\left(3+x^{1+\frac{1}{2}}\right)dx = \int_{0}^{1}\left(3+x^{\frac{3}{2}}\right)dx \\ | = \int_{0}^{1}\left(3+x^{1+\frac{1}{2}}\right)dx = \int_{0}^{1}\left(3+x^{\frac{3}{2}}\right)dx \\ | ||
&= 3x+\frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1}\bigg|_{0}^{1} = 3x+\frac{x^{\frac{5}{2}}}{\frac{5}{2}}\bigg|_{0}^{1} = 3x+\frac{2x^{5/2}}{5}\bigg|_{0}^{1} \\ | &= 3x+\frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1}\bigg|_{0}^{1} = 3x+\frac{x^{\frac{5}{2}}}{\frac{5}{2}}\bigg|_{0}^{1} = 3x+\frac{2x^{5/2}}{5}\bigg|_{0}^{1} \\ | ||
&= 3(1) | &= 3(1)+\frac{2(1)^{5/2}}{5}-3(0)+\frac{2(0)^{5/2}}{5} = | ||
\end{align} | \end{align} | ||
Revision as of 21:41, 23 August 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int _{0}^{1}\left(3+x{\sqrt {x}}\right)dx&=\int _{0}^{1}\left(3+x^{1}{x}^{\frac {1}{2}}\right)dx=\int _{0}^{1}\left(3+x^{1+{\frac {1}{2}}}\right)dx=\int _{0}^{1}\left(3+x^{\frac {3}{2}}\right)dx\\&=3x+{\frac {x^{{\frac {3}{2}}+1}}{{\frac {3}{2}}+1}}{\bigg |}_{0}^{1}=3x+{\frac {x^{\frac {5}{2}}}{\frac {5}{2}}}{\bigg |}_{0}^{1}=3x+{\frac {2x^{5/2}}{5}}{\bigg |}_{0}^{1}\\&=3(1)+{\frac {2(1)^{5/2}}{5}}-3(0)+{\frac {2(0)^{5/2}}{5}}=\end{aligned}}}