2024/G2/12: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 13: | Line 13: | ||
4) <math>{\frac{d}{dx}} [x^3 + x^2 + 10] = 3x^2 +2x + 0 </math> <br> | 4) <math>{\frac{d}{dx}} [x^3 + x^2 + 10] = 3x^2 +2x + 0 </math> <br> | ||
5) <math>{\frac{d}{dx}} [\sqrt(x)] = {\frac{d}{dx}} [x^{\frac{1}{2}}] = {\frac{1}{2x}}^{{\frac{1}{2}}-{\frac{2}{2}}} = {\frac{1}{2x}}^{\frac{-1}{2}} = {\frac{1}{2\sqrt(x)}}</math><br> | 5) <math>{\frac{d}{dx}} [\sqrt(x)] = {\frac{d}{dx}} [x^{\frac{1}{2}}] = {\frac{1}{2x}}^{{\frac{1}{2}}-{\frac{2}{2}}} = {\frac{1}{2x}}^{\frac{-1}{2}} = {\frac{1}{2\sqrt(x)}}</math><br> | ||
A1. | A1. <math> {\sqrt[n](x^m)} = ({\sqrt[n]x})^m = x^{\frac{m}{n}} </math><br> | ||
6) <math> {\frac{d}{dx}} [{\sqrt[3](x^2)}] = {\frac{d}{dx}} [x^{\frac{2}{3}}] = {\frac{2}{3}} \cdot x^{\frac{-1}{3}} = {\frac{2}{3} \cdot \sqrt[3](x)} </math><br> | |||
<math> \sqrt(x) </math> | 7) <math> {\frac{d}{dx}} [(\sqrt[5]x)^7] = {\frac{d}{dx}} [{\frac{7}{x^5}}] = {\frac{7}{5}} \cdot x^{{\frac{7}{5}} - 1} = {\frac{7}{5}} \cdot x^{{\frac{2}{5}}} = {\frac{7}{5}} \cdot {\sqrt [5]x^2} </math><br> | ||
8) <math> {\frac{d}{dx}} [3x^{10}+e^{x}-5^{x}] = 30x^{9} + e^{x} - ln(5) \cdot 5^{x} </math><br> | |||
\sqrt{x} <br>< | 9) <math> {\frac{d}{dx}} [{\frac{1}{x}}] = {\frac{d}{dx}} [x^{-1}] = -1 \cdot x^{-1-1} = -x^{-2} = - {\frac{1}{x^2}} </math><br> |
Revision as of 18:09, 11 April 2023
1. The derivative of a constant is 0 =
2.
3.
4.
5.
6.
1)
2)
3)
4)
5)
A1.
6)
7)
8)
9)