2024/G1/2: Difference between revisions

From Mr. V Wiki Math
< 2024‎ | G1
Jump to navigation Jump to search
Line 12: Line 12:
To find the Tangent Line we use <math>  \lim_{h \to 0}\frac{f(x+h)-f(x)}{h}  
To find the Tangent Line we use <math>  \lim_{h \to 0}\frac{f(x+h)-f(x)}{h}  
</math><br> We later apply the points on which we want to find the slope.
</math><br> We later apply the points on which we want to find the slope.
Ex:</math>f(x)=x^2 f'(x)=\lim{h \to 0}\frac{f(x+h)-f(x)}{h}= \lim{h \to 0}\frac{(x+h)^2-x^2}{h}= \lim{h \to 0}\frac{x^2+2xh+h^2-x^2)}{h}=\lim{h \to 0}\frac{h^2+2xh}{h}=\lim{h \to 0}\frac{\cancel{h}
Ex:</math>f(x)=x^2 f'(x)=\lim{h \to 0}\frac{f(x+h)-f(x)}{h}= \lim{h \to 0}\frac{(x+h)^2-x^2}{h}= \lim{h \to 0}\frac{x^2+2xh+h^2-x^2)}{h}=\lim{h \to 0}\frac{h^2+2xh}{h}=\lim{h \to 0} </math><br>
</math><br>


==2.8 THE DERIVATIVE AS A FUNCTION ==
==2.8 THE DERIVATIVE AS A FUNCTION ==

Revision as of 21:07, 30 March 2023

2.2 THE LIMIT OF A FUNCTION

Notes go here for 2.2... example:

2.3 CALCULATING LIMITS USING THE LIMIT LAWS

2.5 CONTINUITY

2.6 LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES

2.7 DERIVATIVES AND RATES OF CHANGE

To find the Tangent Line we use
We later apply the points on which we want to find the slope. Ex:</math>f(x)=x^2 f'(x)=\lim{h \to 0}\frac{f(x+h)-f(x)}{h}= \lim{h \to 0}\frac{(x+h)^2-x^2}{h}= \lim{h \to 0}\frac{x^2+2xh+h^2-x^2)}{h}=\lim{h \to 0}\frac{h^2+2xh}{h}=\lim{h \to 0} </math>

2.8 THE DERIVATIVE AS A FUNCTION