7.1 Integration By Parts/28: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
\int_{1}^{2}\frac{\ln{x}^2}{x^3} = -\frac{\ln^2{(x)}}{2x^2} - \int-\frac{\ln{(x)}}{x^3} & = -\frac{\ln^2{(x)}}{2x^2} + \int\frac{\ln{(x)}}{x^3} | \int_{1}^{2}\frac{\ln{x}^2}{x^3} = -\frac{\ln^2{(x)}}{2x^2} - \int-\frac{\ln{(x)}}{x^3} & = -\frac{\ln^2{(x)}}{2x^2} + \int\frac{\ln{(x)}}{x^3} & = -\frac{\ln^2{(x)}}{2x^2} - \frac{\ln{(x)}}{2x^2} - \int-\frac{1}{2x^3} \\[2ex] | ||
& u = \ln{(x)} \qquad dv = \frac{1}{x^3} \\[2ex] | & u = \ln{(x)} \qquad dv = \frac{1}{x^3} \\[2ex] | ||
Line 13: | Line 13: | ||
& = -\frac{\ln{(x)}}{2x^2} - \frac{1}{2}\int\frac{1}{x^3} \\[2ex] | |||
& = -\frac{\ln{(x)}}{2x^2} - \frac{1}{4x^2} | |||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 22:28, 16 December 2022