7.1 Integration By Parts/28: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math> \int_{1}^{2}\frac{(\ln{x})^2}{x^3} </math>
<math> \int_{1}^{2}\frac{(\ln{x})^2}{x^3} </math>


<math> u = \ln{x} \qquad dv = \frac{1}{x^3} </math> <br><br>
<math> u = \ln^2{x} \qquad dv = \frac{1}{x^3} </math> <br><br>
<math> du = \frac{1}{x} \qquad v = -\frac{1}{2x^2} </math>
<math> du = \frac{2\ln{(x)}}{x} \qquad v = -\frac{1}{2x^2} </math>


<math>
<math>
\begin{align}
\begin{align}
\int_{1}^{2}\frac{\ln{x}^2}{x^3} = -\frac{\ln^2{(x)}}{2x^2} - \int-\frac{\ln{(x)}}{x^3} & = -\frac{\ln^2{(x)}}{2x^2} + \int\frac{\ln{(x)}}{x^3}\\[2ex]
\int_{1}^{2}\frac{\ln{x}^2}{x^3} = -\frac{\ln^2{(x)}}{2x^2} - \int-\frac{\ln{(x)}}{x^3} & = -\frac{\ln^2{(x)}}{2x^2} + \int\frac{\ln{(x)}}{x^3}\\[2ex]
u =





Revision as of 22:19, 16 December 2022