6.5 Average Value of a Function/5: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 7: Line 7:
f_{avg} &= \frac{1}{5}\int_{0}^{5}te^{-t^2}\,dx = \frac{1}{5}\int_{0}^{5}-\frac{1}{2}(e^u)\,du \\[2ex]
f_{avg} &= \frac{1}{5}\int_{0}^{5}te^{-t^2}\,dx = \frac{1}{5}\int_{0}^{5}-\frac{1}{2}(e^u)\,du \\[2ex]
& = \frac{1}{5}\int_{0}^{25}e^u(-\frac{1}{2}du) = \frac{1}{10}\int_{-25}^{0}e^u\,du  \\[2ex] = \frac{1}{10}e^u \bigg|_{-25}^{0}  \\[2ex]
& = \frac{1}{5}\int_{0}^{25}e^u(-\frac{1}{2}du) = \frac{1}{10}\int_{-25}^{0}e^u\,du  \\[2ex] = \frac{1}{10}e^u \bigg|_{-25}^{0}  \\[2ex]
& = \frac{1}{10}-\frac{1}{10}e^{-25} \\[2ex]
& = \frac{1}{10}-\frac{1}{10}e^{-25} = \frac{1}{10}(1-e^{-25}) \\[2ex]
& = \frac{1}{10}(1-e^{-25}) \\[2ex]
\end{align}
\end{align}
</math>
</math>

Revision as of 19:37, 16 December 2022