7.1 Integration By Parts/3: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
\int\,x\cos5xdx \\[2ex] | \int\,x\cos5xdx \\[2ex] | ||
u=x\qquad dv=\cos5xdx \\[2ex] | u=x\qquad dv=\cos5xdx \\[2ex] | ||
du=dx\qquad v=\frac{1}{5}\sin5x | du=dx\qquad v=\frac{1}{5}\sin5x\\[2ex] | ||
\int\,x\cos5xdx &=x\cdot\frac{1}{5}\sin5x-\int\\[2ex] | |||
&= \int\,\frac{1}{5}\sin5x\cdot\,dx\\[2ex] | |||
&= \frac{1}{5}\int\,\sin5xdx\\[2ex] | |||
&= \frac{1}{5}\cdot\frac{1}{5}(-\cos5x)\\[2ex] | |||
&= -\frac{1}{25}\cos5x+C\\[2ex] | |||
&= \frac{1}{5}x\sin5x+\frac{1}{25}\cos5x+C | |||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 10:47, 16 December 2022