7.1 Integration By Parts/3: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:
\int\,x\cos5xdx \\[2ex]
\int\,x\cos5xdx \\[2ex]
u=x\qquad dv=\cos5xdx \\[2ex]
u=x\qquad dv=\cos5xdx \\[2ex]
du=dx\qquad v=\frac{1}{5}\sin5x
du=dx\qquad v=\frac{1}{5}\sin5x\\[2ex]
 
\int\,x\cos5xdx &=x\cdot\frac{1}{5}\sin5x-\int\\[2ex]
 
&= \int\,\frac{1}{5}\sin5x\cdot\,dx\\[2ex]
 
&= \frac{1}{5}\int\,\sin5xdx\\[2ex]
 
&= \frac{1}{5}\cdot\frac{1}{5}(-\cos5x)\\[2ex]
 
&= -\frac{1}{25}\cos5x+C\\[2ex]
 
&= \frac{1}{5}x\sin5x+\frac{1}{25}\cos5x+C


\end{align}
\end{align}
</math>
</math>

Revision as of 10:47, 16 December 2022