5.5 The Substitution Rule/33: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 7: Line 7:
\begin{align}
\begin{align}
u &= \cot{(x)} \\[2ex]
u &= \cot{(x)} \\[2ex]
du &= csc^2{(x)}dx \\[2ex]
du &= -csc^2{(x)}dx \\[2ex]
-du &= \csc^2{(x)}dx \\[2ex]
-du &= \csc^2{(x)}dx \\[2ex]
\end{align}
\end{align}

Latest revision as of 09:25, 16 December 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int {\sqrt{\cot(x)}} \csc^2{(x)}dx }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= \cot{(x)} \\[2ex] du &= -csc^2{(x)}dx \\[2ex] -du &= \csc^2{(x)}dx \\[2ex] \end{align} }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} &= - \int{(\sqrt{u})}du \\[2ex] &= \int (u^{\frac{1}{2}})du \\[2ex] &= -\frac{2}{3} u + C \\[2ex] &= -\frac{2}{3} (\cot{(x)})^{\frac{3}{2}} +C \end{align} }